
KNOW YOUR JAVA?

speaker.identity {
 name 'Venkat Subramaniam'
 company 'Agile Developer, Inc.'
 credentials 'Programmer', 'Author', 'Trainer'
 blog 'http://agiledeveloper.com/blog'
 email 'venkats@agiledeveloper.com'
}

Abstract

Java has been around for well over a decade now. It
started out with the goal of being simple. Over the
years, its picked up quite a bit of features and along
comes complexity. In this presentation we will take a
look at some tricky features of Java, those that can trip
you over, and also look at some ways to improve your
Java code. Java features. Set of tricks. Tips to improve
your Java code.

2

Creating Strings

3

Creating Strings

Strings are immutable

"Hello" is already an instance of String

using new on String creates a new redundant instance

Using new to create String is not a good idea

4

Comparing Strings

5

Comparing Strings

== compares identity—don’t use it to compare Strings

.equals() compares value

6

Concatenating Strings

7

Concatenating Strings

They both do almost the same thing under the hood

If all you’re doing is concatenating two Strings occasionally
like above, first one is sufficient and even better

If you’re concatenating large number of Strings, then
consider alternatives

8

Concatenating Strings

9

Concatenating Strings
Neither one

If thread synchronization is not needed, use StringBuilder
instead

Go ahead and measure time taken for concatenation for
each option

Remember to allocate enough size for StringBuilder

10

Object finalize

11

Object finalize
File is not closed, content not written (flushed)

Resource may be held much longer than needed

don’t rely on finalizers

Option 1: provide your own clean up method

12

There’s still a problem here...

Object finalize
In Option 1, you’re under the mercy of caller to call close()

Option 2: Try making it automatic

When Java gets closure, this will become easier, but until then...

13

Resource closed automatically...

There’s still a problem here...

Execute Around Method Pattern

Cleanup

14

Cleanup
If exception is thrown, close() may not be called...

Wrap in try-finally

15

equals

16

equals
equals() must be symmetric, reflective, and transitive

17

equals
ensure you’re checking objects of the right type

18

May be a problem if objects in different
containers/classloaders. May want to check

for their actual class name?

equals...

19

equals...

20

Equal objects are required to have equal hashCodes

equals...

21

If you override equals, provide hashCode() method

static in Generics

22

static in Generics

23

Type erasure converts T to Object

All instances of Generics will share the same static

Don’t use static in Generic classes

This becomes clearer if you convert getCount to static and
call it as MyList<Integer>.getCount()

Compiler allows only MyList.getCount()

static and Inheritance

24

static and Inheritance

25

Output from above code is

static methods are not polymorphic

Don’t call static methods on instances

Avoid confusion, only call them on classes

static and Threading

26

static and Threading

27

count++ is not atomic

If multiple threads invoke constructor at same time, count will
be in jeopardy

Does this fix?

static and Threading

28

Nope, not effective synchronization

How about?

static and Threading

29

Too sweeping

Generally, synchronizing on Class is not a smart idea

If another part of code synchronizes on the same, it limits
concurrency

Make synchronization very specific and narrow

static and Threading

30

For simple increment operation, use AtomicLong

Overriding

31

Overriding

32

foo in Derived is hiding foo in Base

Don’t override and change signature

Overriding

33

Not all languages (on the
JVM) are the same

Try running the above Java
code through Groovy!

Groovy’s multimethods
produces a different result

//Test.groovy

Polymorphism

34

Polymorphism

35

Don’t call polymorphic (non-final) methods from within
constructors

Generics and Interfaces

36

Generics and Interfaces

37

ArrayList’s remove looks for index

Collection’s remove looks for object

So, it converts 0 to Integer (which does not exist in list)

Try running the above example through Groovy!

Again Groovy’s multimethod will produce different result

It is odd?

38

It is odd?

39

% 2 for -ve numbers does not work as you’d expect

instead ask if it is even and negate

Computation

40

Computation

41

Which language?!

Java reports 0.8999999999999999

Groovy reports 0.9

float and double don’t give you as much accuracy as BigDecimal

Groovy uses that by default

In Java, use BigDecimal for accuracy

Note use of "" instead of new BigDecimal(2.0)

Never use BigDecimal(double) constructor–exact double
representation, so in accurate

Simple Math?

42

Simple Math?

43

Initial value fits in size of int

Final result fits

But intermediate values don’t

Make type large enough to hold intermediate results

Simple Addition

44

Simple Addition

45

Magnitude of number is too large

As magnitude increases, next representable nearest number
if farther away

You can find next nearest number using ulp (unit in the last
place)

References
"Effective Java: Programming Languages Guide," Joshua
Block, Addison Wesley, 2001.

"Java Puzzlers: Traps, Pitfalls, and Corner Cases,"
Joshua Block and Neal Gafter, Addison Wesley, 2005.

"Java Concurrency in Practice," Brian Goetz, Tim
Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes,
Doug Lea, Addison Wesley, 2006.

"Programming Groovy: Dynamic Productivity for the
Java Developer," Venkat Subramaniam, Pragmatic
Bookshelf, 2008.

46

You can download examples and slides from
http://www.agiledeveloper.com - download

Thank You!
Please fill in your session evaluations

47

You can download examples and slides from
http://www.agiledeveloper.com - download

