
Programming Scala
Venkat Subramaniam

venkats@AgileDeveloper.com

Not Your Father’s Environment

2

Your World: Multiprocessors are Common Place

Multithreading on Steroids

“Well Written” Programs may be ill-fated on
Multiprocessors

Cry for Higher Level Of
Abstraction

3

Threading Support of Java/.NET Won’t Cut It

As soon as you create a thread,

synchronize is latin for waste Concurrency

you worry how to control it

How can Functional
Programming Help?

4

Assignment-less Programming

Immutable State

You can’t Screwup what
you can’t change

But What’s FP?

5

Functions are first-class citizens
create them wherever you like,

store them, pass them around, ...

Higher Order Functions

Functions accept functions as
parameters

List(1, 2, 3).map(_ * 2)}

What’s Scala?

6

It’s more of a cocktail

Supports Imperative (how to do) and
Functional (what to do) style of coding

var total = 0
for(i <- 1 to 3)

 total += i

(1 to 3).foldLeft(0) { _ + _ }
(0 /: (1 to 3)) { _ + _ }

(1 to 3).foldLeft(0) {(v, e) => v + e}

Old wine in a new bottle
Provides FP on the JVM

What can it do for you?

7

event-based concurrency model

purely OO

intermixes well with Java
sensible static typing

concise

highly scalable

built on small kernel

Essence vs. Ceremony

8

public class HelloWorld
{
 public static void main(String[] args)
 {
 System.out.println("Hello World!");
 }
}

Why?

println("Hello World!")

; . () optional

9

for(i <- 1.to(3)) print("ho ")

for(i <- 1 to 3) print("ho ")

No Operators, but Supports
Operator Overloading!

10

No Operators...

a + b is really a.+(b)

+() is simply a method

But, what about precedence?
first char of method name decides that!

Precedence

11

class Sample
{
 def +(other: Sample) : Sample =
 { println("+ called"); this }
 def *(other: Sample) : Sample =
 { println("* called"); this }
}

val sample = new Sample
sample + sample * sample

* called
+ called

Cute Classes

12

class Car(val year: Int, var miles: Int)
{
 // what you put here goes into primary constructor
 println("Creating Car")

 def drive(dist: Int)
 {
 miles += dist
 }
}

val car = new Car(2009, 0)
println(car.year)
println(car.miles)
car drive 10
println(car.miles)

Pure OO—No static

13

Everythin’s an Object

For performance Int maps to Java primitive int

Has no support for static
Something better!–Companion Objects

Companion Object

14

class Creature
{
 Creature.count += 1
}

object Creature
{
 var count: Int = 0
}

println("Number of Creatures " + Creature.count)
new Creature
println("Number of Creatures " + Creature.count)

vals and vars
vars are variables

You can reassign to them

vals provide immutability—they’re valuables?!

Constant

15

var str1 : String = "hello"
val str2 : String = "hello"

str1 = "hi" // ok
str2 = "hi" // ERROR

Type Inference

16

var str = "hello"
def foo() = 2

// Scala knows str is String and
// foo returns Int

str = "hi" // OK

str = 4 // type-mismatch ERROR

Static typing that Works

17

val nums = Array(1, 2, 3)

var objs = new Array[Object](4)

objs = nums // type-mismatch ERROR
 // (unlike Java)

Closures
Function-values (code blocks) can bind to variables other
than parameters and local variables

These variables have to be closed before method
invocation—hence closure

18

var total = 0
(1 to 5).foreach { total += _ }
println(total)

var product = 1
(1 to 5).foreach { product *= _ }
println(product)

Execute Around Method

19

class Resource
{
 println("Start transaction")

 def close() { println("End transaction") }
 def op1() { println("op1") }
 def op2() { println("op2") }
}
object Resource
{
 def use(block : Resource => Unit)
 {
 val resource = new Resource
 try {
 block(resource)
 }
 finally { resource.close }
 }
}

Resource.use { resource =>
 resource.op1
 resource.op2
}

Traits—Cross Cutting Concerns

20

class Human(val name: String)
{
 def listen =
 println("I'm " + name + " your friend. I'm
listening...")
}

class Man(override val name: String) extends Human(name)

val sam = new Man("Sam")
sam.listen

//Friend is not modeled well
//Not clear
//Hard to reuse

Traits can help here
Think of them as interfaces with partial

implementations

Traits—Cross Cutting Concerns

21

trait Friend
{
 val name : String //abstract
 def listen =
 println("I'm " + name + " your friend. I'm listening...")
}

class Human(val name: String)

class Man(override val name: String)
 extends Human(name)
 with Friend

class Dog(val name: String) extends Friend
{
 override def listen =
 println("Your friend " + name + " listening...")
}

def help(friend: Friend) { friend.listen }

help(new Man("Sam"))
help(new Dog("Casper"))

22

Traits—Cross Cutting Concerns
Not just at
class level

class Cat(val name: String)

help(new Cat("Sally") with Friend)

Pattern Matching

23

Quite powerful–here’s a sample

def process(input : Any)
{
 val time = """(\d\d):(\d\d):(\d\d)""".r
 val date = """(\d\d)/(\d\d)/(\d\d\d\d)""".r

 input match {
 case "Scala" => println("Hello Scala")
 case (a, b) => println("Tuple " + a + " " + b)
 case num : Int => println("Received number " + num)
 case time(h, m, s) => printf("Time is %s hours %s minutes %s seconds\n", h, m, s)
 case date(m, d, y) => printf("%s day %s month of year %s\n", d, m, y)
 }
}

process("Scala")
process(22)
process(1, 2)
process("12:12:10")
process("06/14/2008")

Concurrency

No need for synchronized, wait, notify, ...

Just create actors

Send messages

Make sure messages are immutable

You’re done

24

Actor Based

25

import scala.actors.Actor._
import scala.actors.Actor

def getFortune() =
{
 val fortunes = List("your day will rock",
 "your day is filled with ceremony",
 "have a dynamic day",
 "keep smiling")

 fortunes((Math.random * 100).toInt % 4)
}

val fortuneTeller = actor {
 var condition = true
 while(condition)
 {
 receive {
 case "done" => condition = false
 case name : String =>
 sender ! name + " " + getFortune()
 }
 }
}

fortuneTeller ! "Sam"
fortuneTeller ! "Joe"
fortuneTeller ! "Jill"
fortuneTeller ! "done"

for(i <- 1 to 3)
{
 receive {
 case msg =>

 println(msg)
 }
}

Run’s in own thread

Send message using ! receive to get msg

Thread Pooling

26

Each actor by default get’s own thread

Not efficient when large number of actors

react can help
relinquishes thread while wait
gets a thread from pool when active
react never returns

so call tail recursive
or use loop()

Using react

27

import scala.actors.Actor._

def info(msg: String)
{
 println(msg +
 " received by " +
 Thread.currentThread)
}

def useReceive()
{
 while(true)
 {
 receive { case msg : String => info(msg) }
 }
}

def useReact()
{
 react {
 case msg : String =>
 info(msg)
 useReact()
 }
}

val actors = List(actor { useReceive },
 actor { useReceive },
 actor { useReact },
 actor {useReact})

for(i <- 1 to 12)
{
 actors(i % 4) ! "hello" + (i % 4)
 Thread.sleep(1000)
}

hello1 received by Thread[Thread-5,5,main]
hello2 received by Thread[Thread-6,5,main]
hello3 received by Thread[Thread-6,5,main]
hello0 received by Thread[Thread-3,5,main]
hello1 received by Thread[Thread-5,5,main]

hello2 received by Thread[Thread-4,5,main]
hello3 received by Thread[Thread-4,5,main]
hello0 received by Thread[Thread-3,5,main]
hello1 received by Thread[Thread-5,5,main]

hello2 received by Thread[Thread-6,5,main]
hello3 received by Thread[Thread-4,5,main]
hello0 received by Thread[Thread-3,5,main]

eSCALAtion of Usage

28

Scala
Java Groovy JRuby

(Concurrency)

Seamless integration

Can call from any JVM language
Can call into any Java code

References

29

http://www.scala-lang.org

http://www.pragprog.com/titles/vsscala

Thank You!

http://booksites.artima.com/
programming_in_scala

