WW@JW

Venkat Subramaniam
venkats@AgileDeveloper.com

Programming
Practices of an Sc.kalaqm
J e on e Java Virtuad chine
Developer

Programming
Groovy

NET
Gotchas - \

Not Your Fathers Environment

Your World: Multiprocessors are Common Place

Multithreading on Steroids

"Well Written” Programs may be ill-fated on
Multiprocessors

Cry for Higher Level Of
Abstraction

Threading Support of Java/.NET Wont Cut It

As soon as Yyou create a thread,
you worry how to control it

synchronize is latin for waste Concurrency

£)

How can Functional
Programming Help?

Assignment-less Programming

Immutable State

You cant Screwup what
you cant change

But What's FP?

Functions are first-class citizens

create them wherever you like,
store them, pass them around, ..

Higher Order Functions

Functions accept functions as

‘\pamme’rers f '

L1st (352 s Ticioie s e)

Whats Scala?

Old wine in a new bottle
Provides FP on the JVM

e e ol v 0
el <= 0 to”3)
e ol =g

Its more of a cocktail

Supports Imperative (how to do) and
Functional (what to do) style of coding

(1 to 3)u foldMiEh = Sty cscl '=>"\ + e}
(1 to 3y, Eerlcllic i sy s
QORWVA- o

What can it do for you?

event-based concurrency model

purely OO

infermixes well with Java

sensible static typing

concise

built on small kernel

highly scalable

Essence vs. Ceremony

public class HelleoWo i
{

public? sitathe aamd Etin (St L@ail ca e

{
System.ou.iprant | n (MEello Wordld!") ;
J
J

Why?

printlia e BesEeiilor liel " "))

; . () optional

for {1l —w L@Eo (S Esmial (Yo, ")

forta <=1 dseua) Tt (o ')

No Operators, but Supports
Operator Overloading!

No Operators...

a + bisreally a.+ (b)

+ () is simply a method

Butf, what about precedence?
first char of method name decides that!

10

Precedence

e
* /%
all other special characters

Figure 3.1: PRIORITY OF FIRST CHARACTER OF METHODS, IN INCREASING

€ l ass S amp l e ORDER OF PRECEDENCE
{
def + (other: Sample) : Sample
{ prantind"+:callivc 'y isitisr S
def *(otherarSdiip el : Oamp e
{ printIn (2 CoilE e e pase |

val sample =" el iaNs * called
sample + sample * sample + called

Cute Classes

class Cardvaliycar: nt, - uchosiiiss= i)

{
// what . you puf here goes dito phnimary Cconstructor
printin(ruC Eas i rieas s i

def drrvwe (disE s ine)
{
miles += dist
}
} Creating Car
2009

val car = new Car (2009, 0)
printlnfcarsyeat]) 10
println(car.miles)

car drisze el

println(car.miles)

Pure O0O—No static

Everythins an Object

For performance Int maps to Java primitive int

Has no support for static
Something better!-Companion Objects

Companion Object

class Creature

{

Creature.count += 1

}
Number of Creatures 0

object Creature Number of Creatures 1
{

vVar GOURE @ EaEs

}

println ("Number of Creatures " + Creature.count)

new . CrcaiE g
println ("Number of Creatures " + Creature.count)

vals and vars

@ vars are variables
@ You can reassign to them
@ vals provide immutability—theyre valuables?!

® Constant

vVar: st rl «assT @)
val T s Tr A el g

SHte Al ThyS ek
STEA 1" e BEREOR

Type Inference

var+sistiie — heliilfes
def foo() = 2

/ fioScalasEnows s s S g and
/ [TOCTIEEE U Sy IR

S "hife A COR

StE 4 // type-mismatch ERROR

Static typing that Works

val nums Areay (], e)
vVarieloss new Array[Object] (4)

objs = nums // type-mismatch ERROR
/A ke datva)

Closures

@ Function-values (code blocks) can bind to variables other
than parameters and local variables

® These variables have to be closed before method
invocation—hence closure

var O e =
(1 to 5).foreachdiie: ot o
printiyete ol

var prodilctisa
(1 to 5).foreaclhi { Prodics =
println (proeiiisis

Execute Around Method

class Resource

{

printlni(iSEari ChdiNsacEuc iy

def closeil) “F9@e intlr (P EREE ST NS o c e
def opl () s rrtlelt Op B
def opZ.) & RS oo RS

J

| Start transaction
object Resource
{

def use(block : Resource => Unit)

{

val resource = new Resource
Cry {

blogk (resourcesd

) Resource.use { resource =>
finally { resource.close } resourcer opl

resource.op?

End transaction

J

Traits—Cross Cutting Concerns

class Human (val name: String)

{
def listen

printlngl Tigess'’ o te nafc Sias 7ait 1 Le (leee 1)
listenings &

}

class Man (override val name: String) extends Human (name)

val sam = new Man ("Sam")
sam.ilisten

//Friend is. not modeceliic il
/ /Not?cliesis
[fHard E@tceiiss

Traits can help here
Think of them as interfaces with partial

implementations

Traits—Cross Cutting Concerns

trait Friend
{
val name. : Strrn@e/i/ bt ch

def listen =
println ("Lgm it HERame . v ouasaesend . T misseEiEen i 1 gt e

}

class Human (val name: String)

class Man (override val name: String)
extends Human (name)
with Friend

class Dog(val name: String) extends Friend

{

override def listen =
printle("Your -Frientl I SEies S e e L)

}

def help(friend: Friend) { friend.listen }

help (new Man ("Sam"))
help (new Dog ("Casper"))

Traits—Cross Cutting Concerns

Not just at
class level

class Cat (val#siame f ¥Str 107

help (new Cat ("Sally") with Friend)

Pattern Matching

Quite powerful-heres a sample

def process (input : Any)
{
val time maw (NN d) e aa e A NG e
val date: = "Lk NONG)T O SRNEE all o Nl STV D

input’ ma EEiee
case "Scala® =>prEntlmn ("Hel 1o Scalal)
case {(a,+«b) => printimrifuple "% "+ o SRR
case num : Int => println("Received number " + num)
case time(h, my s) =>printT " TiMSEEeics" hoMESEr st rmite s Ssemecnds yn', ~h, m, 's)
case date(m, d, ¥) =>iprintf("Sssdayi*>s month-of\ycam - SsXfiad,m, V)

process("ScalE™)

process (22)

process (1) Hello Scala
(IE1 2" 12 1S Received number 22
(

V6 1 4 ZURE Tuple 1 2
Time is 12 hours 12 minutes 10 seconds

14 day 06 month of year 2008

process
process

Concurrency

@ No need for synchronized, wait, notify, ...
@ Just create actors

@ Send messages

@ Make sure messages are immutable

® YouTre done

Actor Based

importyscCalaticiao s S e

iy 1A "
import Scailc dCuanis &L C it tortuneTeller : Sam

porcuneTeller 'SEIoaw
def getFortune() = ForEuncfad 1 e gl = 1. T
{ foreanedel e 2 s done™
val fortunes solEst (""Veoulday Gl dSSEeeic s
"your dayis LTiltled with ceremiony', Eor(e
"have a dynamic day", {
"keep smiling") ,
receive {
fortunes ((Math T Eandom:* " 100) " tolnt e as Case, MSg ==
} println (msqg)

val fortuneTeller = actor { }
var condiEiEcns=R=Eaie
while (condition)

(. PO [e i s e =ts (s Sam your day will rock
T Joe your day will rock

case "done" '=> condiitt e T =n G Nt

case name™: Strimgitss Jill have a dynamic day

sender ! namé gt EaSEEe T FONRE G

}

Send message using ! receive to get msg

Thread Pooling

Each actor by default gets own thread

Not efficient when large number of actors

react can help
relinquishes thread while wait

gets a thread from pool when active

react never returns
so call tail recursive

or use loop ()

Using react

import scala 4EiC EEREREE Ca) S

def infeo (msgitisEaan gy hellol received by Thread[Thread-5,5,main]
{ hello2 received by Thread[Thread-6,5,main]
hello3 received by Thread[Thread-6,5,main]
. % helloO received by Thread[Thread-3,5,main]
received by i hellol received by Thread[Thread-5,5,main]
Threadrcurrenmfhread) hello2 received by Thread[Thread-4,5,main]
hello3 received by Thread[Thread-4,5,main]
helloO received by Thread[Thread-3,5,main]
def UseRecaive hellol received by Thread[Thread-5,5,main]
hello2 received by Thread[Thread-6,5,main]
{ hello3 received by Thread[Thread-4,5,main]
while (true) hello0 received by Thread[Thread-3,5,main]

{

print 1 (HISCEE,

"

receive { case msg : String => info(msg) }

val actors = List (actor { useReceive },
actor { useReceive 1},

def useReact () O COR G IIsERE A CamiLy
{ actor {useReact})

react {
case msg s Stringd=> o B OTREEEEE ST o] 27
info (msqg) {
Use ReaEiny actors (1 LA e I o"
Thread.sleep (1000)

eSCALAtion of Usage

Scala

(Concurrency)

Seamless integration
Can call into any Java code

Can call from any JVM language

Programming
Scala

Core Comglentty
on e Java Virtuad Machene

References

http://booksites.artima.com/
programming_in_scala

http://www.scala-lang.org

http://www.pragprog.com/titles/vsscala

Thank Youl!

