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Not Your Father’s Environment
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Your World: Multiprocessors are Common Place

Multithreading on Steroids

“Well Written” Programs may be ill-fated on 
Multiprocessors



Cry for Higher Level Of 
Abstraction

3

Threading Support of Java/.NET Won’t Cut It

As soon as you create a thread,

synchronize is latin for waste Concurrency

you worry how to control it



How can Functional 
Programming Help?
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Assignment-less Programming

Immutable State

You can’t Screwup what 
you can’t change



But What’s FP?
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Functions are first-class citizens
create them wherever you like, 

store them, pass them around, ...

Higher Order Functions

Functions accept functions as 
parameters

List(1, 2, 3).map(_ * 2)}



What’s Scala?

6

It’s more of a cocktail

Supports Imperative (how to do) and 
Functional (what to do) style of coding

var total = 0
for(i <- 1 to 3)

  total += i

(1 to 3).foldLeft(0) { _ + _ }
(0 /: (1 to 3)) { _ + _ }

(1 to 3).foldLeft(0) {(v, e) => v + e}

Old wine in a new bottle
Provides FP on the JVM



What can it do for you?
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event-based concurrency model

purely OO

intermixes well with Java
sensible static typing

concise

highly scalable

built on small kernel



Essence vs. Ceremony
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public class HelloWorld
{
  public static void main(String[] args)
  {
    System.out.println("Hello World!");
  }
}

Why?

println("Hello World!")



; . () optional

9

for(i <- 1.to(3)) print("ho ")
  

for(i <- 1 to 3) print("ho ")



No Operators, but Supports 
Operator Overloading!
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No Operators...

a + b is really a.+(b)

+() is simply a method

But, what about precedence?
first char of method name decides that!



Precedence
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class Sample
{
  def +(other: Sample) : Sample =
   { println("+ called"); this }
  def *(other: Sample) : Sample = 
   { println("* called"); this }
}

val sample = new Sample
sample + sample * sample

* called
+ called



Cute Classes
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class Car(val year: Int, var miles: Int)
{
  // what you put here goes into primary constructor
  println("Creating Car")

  def drive(dist: Int)
  {
    miles += dist
  }
}

val car = new Car(2009, 0)
println(car.year)
println(car.miles)
car drive 10
println(car.miles)



Pure OO—No static
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Everythin’s an Object

For performance Int maps to Java primitive int

Has no support for static
Something better!–Companion Objects



Companion Object
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class Creature
{
  Creature.count += 1
}

object Creature
{
  var count: Int = 0
}

println("Number of Creatures " + Creature.count)
new Creature
println("Number of Creatures " + Creature.count)



vals and vars
vars are variables

You can reassign to them

vals provide immutability—they’re valuables?!

Constant

15

var str1 : String = "hello"
val str2 : String = "hello"

str1 = "hi" // ok
str2 = "hi" // ERROR



Type Inference
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var str = "hello"
def foo() = 2

// Scala knows str is String and
// foo returns Int

str = "hi" // OK

str = 4 // type-mismatch ERROR



Static typing that Works
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val nums = Array(1, 2, 3)

var objs = new Array[Object](4)

objs = nums // type-mismatch ERROR 
   // (unlike Java)



Closures
Function-values (code blocks) can bind to variables other 
than parameters and local variables

These variables have to be closed before method 
invocation—hence closure
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var total = 0
(1 to 5).foreach { total += _ }
println(total)

var product = 1
(1 to 5).foreach { product *= _ }
println(product)



Execute Around Method
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class Resource
{
  println("Start transaction")
  
  def close() { println("End transaction") }
  def op1() { println("op1") }
  def op2() { println("op2") }
}
object Resource
{
  def use(block : Resource => Unit)
  {
    val resource = new Resource
    try {
      block(resource)    
    }
    finally { resource.close }
  }
}

Resource.use { resource =>
  resource.op1
  resource.op2
}  



Traits—Cross Cutting Concerns
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class Human(val name: String)
{
  def listen = 
    println("I'm " + name + " your friend. I'm 
listening...")
}                

class Man(override val name: String) extends Human(name)

val sam = new Man("Sam")
sam.listen

//Friend is not modeled well
//Not clear
//Hard to reuse

Traits can help here
Think of them as interfaces with partial 

implementations



Traits—Cross Cutting Concerns
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trait Friend
{         
  val name : String //abstract
  def listen = 
    println("I'm " + name + " your friend. I'm listening...")
}                                                            

class Human(val name: String)

class Man(override val name: String)
  extends Human(name)
  with Friend

class Dog(val name: String) extends Friend
{
  override def listen = 
    println("Your friend " + name + " listening...")
}

def help(friend: Friend) { friend.listen }           

help(new Man("Sam"))
help(new Dog("Casper"))
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Traits—Cross Cutting Concerns
Not just at 
class level

class Cat(val name: String)

help(new Cat("Sally") with Friend)



Pattern Matching
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Quite powerful–here’s a sample

def process(input : Any)
{
  val time = """(\d\d):(\d\d):(\d\d)""".r
  val date = """(\d\d)/(\d\d)/(\d\d\d\d)""".r
  
  input match {        
    case "Scala" => println("Hello Scala")
    case (a, b) => println("Tuple " + a + " " + b)
    case num : Int => println("Received number " + num)
    case time(h, m, s) => printf("Time is %s hours %s minutes %s seconds\n", h, m, s)
    case date(m, d, y) => printf("%s day %s month of year %s\n", d, m, y)
  }
}
                                        
process("Scala")     
process(22)
process(1, 2)
process("12:12:10")
process("06/14/2008")



Concurrency

No need for synchronized, wait, notify, ...

Just create actors

Send messages

Make sure messages are immutable

You’re done
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Actor Based

25

import scala.actors.Actor._
import scala.actors.Actor

def getFortune() = 
{
  val fortunes = List("your day will rock",
    "your day is filled with ceremony",
    "have a dynamic day",
    "keep smiling")
    
  fortunes((Math.random * 100).toInt % 4)
}

val fortuneTeller = actor {
  var condition = true
  while(condition)
  {
    receive {
      case "done" => condition = false        
      case name : String =>
        sender ! name + " " + getFortune()
    } 
  }
}

fortuneTeller ! "Sam"
fortuneTeller ! "Joe"
fortuneTeller ! "Jill"
fortuneTeller ! "done"

for(i <- 1 to 3)
{
  receive {
    case msg => 

   println(msg)
  } 
}

Run’s in own thread

Send message using ! receive to get msg



Thread Pooling
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Each actor by default get’s own thread

Not efficient when large number of actors

react can help
relinquishes thread while wait
gets a thread from pool when active
react never returns

so call tail recursive 
or use loop()



Using react
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import scala.actors.Actor._

def info(msg: String)
{
  println(msg + 
     " received by " + 
        Thread.currentThread)
}

def useReceive()
{
  while(true)
  {
    receive { case msg : String => info(msg) }
  }
}

def useReact()
{
    react { 
      case msg : String => 
        info(msg)
        useReact()
    }
} 

val actors = List(actor { useReceive }, 
  actor { useReceive }, 
  actor { useReact },
  actor {useReact})

for(i <- 1 to 12)
{
  actors(i % 4) ! "hello" + (i % 4) 
  Thread.sleep(1000)
}

hello1 received by Thread[Thread-5,5,main]
hello2 received by Thread[Thread-6,5,main]
hello3 received by Thread[Thread-6,5,main]
hello0 received by Thread[Thread-3,5,main]
hello1 received by Thread[Thread-5,5,main]

hello2 received by Thread[Thread-4,5,main]
hello3 received by Thread[Thread-4,5,main]
hello0 received by Thread[Thread-3,5,main]
hello1 received by Thread[Thread-5,5,main]

hello2 received by Thread[Thread-6,5,main]
hello3 received by Thread[Thread-4,5,main]
hello0 received by Thread[Thread-3,5,main]



eSCALAtion of Usage
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Scala
Java Groovy JRuby

(Concurrency)

Seamless integration

Can call from any JVM language
Can call into any Java code



References
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http://www.scala-lang.org

http://www.pragprog.com/titles/vsscala

Thank You!

http://booksites.artima.com/
programming_in_scala


